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Abstract. We present a Bayesian statistical approach to medical im-
age reconstruction. Here, we obtain not a point estimate for the image
of interest, but a posterior distribution that also quantifies the recon-
struction uncertainty. We approximate the posterior variationally. We
illustrate the effectiveness of our approach in numerical experiments in
which we study variationally Bayesian X-ray tomography.
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1 Statistical Image Reconstruction

Medical image reconstruction problems can often be formulated in the following
way: Identify an image θ† ∈ RNim given a data set y† ∈ RNdt which satisfies

y† = Aθ† + η†,

where A ∈ RNdt×Nim is a matrix and η† is noise. In, e.g., X-ray tomography A
represents the Radon transform and y† is the sinogram acquired by the scanner.
This image reconstruction problem is usually approached by a (regularised) max-
imum likelihood method, which gives an estimate θ∗ ∈ RNim that approximates
the true θ†.

Due to noise and/or ill-conditioning of A, the estimate θ∗ may contain a
considerable amount of remaining uncertainty concerning the true image θ†.
Unfortunately, this uncertainty cannot be quantified through θ∗ itself. Instead,
a Bayesian statistical approach can be employed; see [3] for details. Here, the
image θ† is represented by a random variable θ that has a certain probability
distribution µprior := P(θ ∈ ·). This so-called prior represents knowledge and
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uncertainty in the image before the data y† is observed. Then, Bayes’ formula is
employed to determine the posterior µpost := P(θ ∈ ·|Aθ+ η† = y†), which gives
an accurate description of the knowledge gained through learning the data and
of the remaining uncertainty in the reconstruction. In practice, this posterior
usually needs to be approximated computationally.

2 Variational Bayes

To approximate the posterior in our medical image reconstruction problem we
employ the so-called variational Bayes approach; see, e.g., Chapter 10 of [1]: we
define a set M of probability distributions on RNim and find

µvar := argminµ∈MDKL(µ‖µpost), (1)

where DKL denotes the Kullback–Leibler Divergence.
For the computational approximation of µvar, it is vital that DKL(µ‖µpost)

can be evaluated without first approximating µpost. This is the case, if, e.g.,
µprior and µ ∈ M describe the distribution of some f(ϕ), where f is a given
function and ϕ is a non-degenerate Gaussian random vector.

3 Eulerian and Lagrangian approaches

Inspired by [2], we consider two different models for µprior and M : a Eulerian
and a Lagragian model. In both cases, we aim to represent the uncertain image
θ through a system (ψk)Nba

k=1 ∈ RNim×Nba , i.e.

θ =

Nba∑
k=1

ξkψk

for suitable random prefactors ξ1, . . . , ξNba
. The difference of Eulerian and La-

grangian approach appears in the choice of the system (ψk)Nba

k=1: In the Eulerian

approach, we choose (ψk)Nba

k=1 to be a high-dimensional fixed frame or basis, e.g.,

a system of wavelets or curvelets, and the (ξk)Nba

k=1 to be sparsity-inducing. In the

Lagragian approach, we assume to have a low-dimensional system (ψk)Nba

k=1 that

can be adapted. Hence, not only the prefactors (ξk)Nba

k=1 are uncertain, but also

the vectors in (ψk)Nba

k=1.

3.1 Particular modelling

Let S(x) = (1 + exp(−x))−1 be a non-linearity acting element-wise on vectors.
Then, we choose the following:
Eulerian approach. We set ξk := ζkS(ζ ′k), k = 1, . . . , Nba. In the prior, we choose
ζ1, . . . , ζNba

, ζ ′1, . . . , ζ
′
Nba
∼ N(0, 12) independent. In M we consider the same

structure but assume that the means of the (ζk, ζ
′
k)Nba

k=1 and the variances of the
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Fig. 1. Eulerian variational posterior: Point-wise mean (left column) and variance
(right column).

(ζk)Nba

k=1 are degrees of freedom. The resulting prior of the prefactors (ξk)Nba

k=1 is
a smooth spike-and-slab prior that enforces sparsity.
Lagrangian approach. We set ξk := ζk, ψk = S(Σζ ′−mk), k = 1, . . . , Nba, where
Σ ∈ RNim×Nin is a fixed matrix and m1 < . . . < mNba

are fixed scalars. In
the prior, we choose ζ1, . . . , ζNba

, ζ ′1, . . . , ζ
′
Nin
∼ N(0, 12) independent. In M we

consider the same structure but assume that mean and covariance matrix of
(ζk)Nba

k=1, as well as the mean and variances of the (ζ ′n)Nin
n=1 are degrees of freedom.

The basis functions ψk are obtained through a thresholding of the random object
Σζ ′, which represents a discretisation of a (smooth) Gaussian process.

Importantly, both models represent non-linear transformations of Gaussian
random variables. Thus, they are suitable for a computationally efficient varia-
tional approximation, as discussed in §2.

4 Examples of variationally Bayesian reconstructions

We now give computational examples in which we reconstruct a 50× 50 Shepp–
Logan phantom based on full-angle X-ray data. We assume to have perturbed
the data with scaled Gaussian white noise and quantify the uncertainty in the
image as if this noise had been applied. The results shown, however, are based on
noisefree data. In each case, we employ suitable stochastic optimisation methods
to solve the variational optimisation problems (1).

In the Eulerian approach, we choose (ψk)Nba

k=1 to be a frame of 5184 coiflets.
We show the results in Figure 1.

In the Lagrangian approach, we consider two settings. In both settings, we
choose Σ to be a matrix the columns of which are Nin = 2500 orthogonal
sinusoidal basis vectors. The basis vectors are weighted with prefactors which go
to zero as the frequency of oscillation of the basis vector increases. In the first
setting (‘long correlation length’) the prefactors converge quickly, in the second
case (‘short correlation length’) the prefactors converge slower. In both cases, we
choose Nba = 11 adapted basis vectors. We show the results of our estimations
in Figure 2.
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Fig. 2. Lagrangian variational posterior: Point-wise mean (left column) and variance
(right column). Long correlation length (top row) and short correlation length (bottom
row).

In the Eulerian approach, we see an overall rougher appearance of the piece-
wise constant phantom and a very small posterior variance. The Lagrangian
posterior means are a much more accurate reconstruction of the phantom and
the variances appear to highlight areas in which we expect a larger reconstruction
uncertainty. Using the long correlation length appears to give us a smoother im-
age and cleaner edges, but loses small details. The short correlation length blurs
the edges slightly, but retains all fine details.
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