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1 Introduction

Accurate delineation of skin lesions is prone to inter-expert variability [4], which
calls for automatic segmentation methods. In this paper, we process superpixel
graphs with a novel Graph Convolution layer to segment skin lesions.

2 Methods & Data

First, the Simple Linear Iterative Clustering (SLIC) algorithm [2] divides an
input image into n superpixels of approximately 250 pixels each. We then form
a Region Adjacency Graph (RAG) over these partitions, which is the input of
the proposed network (figure 1). Input features are the output of feeding 50×50
image patches, centred at the superpixel centroids, to a convolution layer.

Positional Encoding. The distances from superpixels to the central one,
normalised to the interval (0, 1), are element-wise added to the input features.

Graph-Context CNN (gc-CNN). We build on the Graph Convolution

Network [9], where Ã = D̂
−1/2
·Â ·D̂

−1/2
guides the propagation of information.

Â is the adjacency matrix with self loops and D̂ its degree matrix. At layer l,
we convolve a tensor X l of n feature maps, each with c channels, height h and
width w, with a learnable kernel KΘ. Fold and unfold operations are used to
enable the propagation of features through the RAG. Putting it all together, the
gc-CNN layer can be written as:

X l+1 = foldf→c×h×w(Ã · (unfoldc×h×w→f (X l ∗KΘ)) + bΘ), (1)

where ∗ denotes the 2-D convolution operation, and bΘ is a learnable bias vector.
Sequences of gc-CNN, the ReLU non-linearity and layer normalization (LN) [3]
are combined with skip connections [7] in the feature extraction block.

Feature Extraction Block. This block (figure 1) comprises a residual block
and a transition block. The latter halves the spatial dimension, increases the
channel dimension and updates Â by re-utilizing the feature maps corresponding
to neighbouring nodes. The mean value of their element-wise product, mapped to
the range (−1, 1) with the Tanh function and weighted by a parameter β = 0.001,

are added to the entries of Â.
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MLP block. A Multi Layer Perceptron (MLP) with layers of 2048, 1024,
512, 128, 32, 16 and 2 neurons, respectively, with ReLU activation and LN [3],
predicts the lesion probability for the superpixels.

Fig. 1. Overall network, comprising k feature extraction blocks and a MLP. The feature
extraction block is formed by a residual block and a transition block.

Training. We label a superpixel as lesion if more than a 60% of its pixels
have that value in the ground truth3. The ADAM optimizer [8] minimizes the
Cross Entropy function for 100 epochs with learning rate λ = 5 · 10−3 and batch
size 1. We use Pytorch Geometric [5] on an 11GB NVIDIA GeForce GTX 1080
Ti.

Datasets. We train on the ISIC-2017 [6] training split; 6 crops are extracted
and flipped for each image. We run inference on two dermatoscopic datasets,
(ISIC-2017 [6] and PH2 [10]), and a non-dermatoscopic dataset (DermQuest [1])
which has less controlled illumination conditions.

Post-processing. We keep only the connected component closest to the
image centre, which reduces false positives caused by illumination gradients in
DermQuest. We also apply binary opening and hole filling operations, which is
useful on ISIC-2017 although it decreases performance on PH2 (see figure 2).

3 Results & Conclusion

Results. Table 1 reports Sensitivity (SEN), Specificity (SPE), Accuracy (ACC)
and F1 score (F1) for the different categories in the PH2 dataset, comparing
against the results reported in [11], where a colour distance criterium was used
to merge superpixels. Figure 2 shows the F1 histograms for all three datasets.

Conclusion. We explore a segmentation technique that combines superpixel
graphs with Deep Learning. Our results for melanoma lesions surpass those in
[11], and our model generalises well to unseen data. Future work will seek to
improve performance and apply the method to other medical domains.

3 60% yields an acceptable F1 score, around 90%, compared to the original masks.
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Table 1. Our results on PH2, in terms of mean and standard deviation, after post-
processing, for models with various k, and those reported in [11]. NN stands for Normal
Nevi, AN for Atypical Nevi, M for Melanoma. The highest figures are in bold.

Ref Class SEN SPE ACC F1

Patiño et al. [11] NN (80 images) 92.12 96.42 95.24±6.37 92.92
ours (k = 1) 97.27±5.66 91.01±6.08 92.88±3.50 82.46±9.46
ours (k = 2) 94.21±13.87 86.86±16.42 89.52±12.52 79.72±16.17
ours (k = 3) 97.39±7.84 86.29±15.54 89.23±12.28 79.23±16.36

Patiño et al. [11] AN (80 images) 92.25 93.54 93.14±8.41 91.12
ours (k = 1) 96.87±4.70 90.31±8.69 92.98±4.20 86.65±7.18
ours (k = 2) 96.39±7.06 85.76±15.96 89.78±10.77 83.54±12.16
ours (k = 3) 97.12±4.45 87.73±13.89 91.38±9.60 85.32±11.76

Patiño et al. [11] M (40 images) 86.45 68.70 75.19±22.16 77.79
ours (k = 1) 84.07±23.70 83.19 ±17.07 81.27±20.09 83.31±18.08
ours (k = 2) 89.26 ± 16.29 80.71 ±14.00 83.76±13.18 85.80±12.36
ours (k = 3) 86.32 ±20.54 86.18 ±10.39 84.04±17.61 86.15±14.76

Patiño et al. [11] All (200 images) 91.04 89.73 90.39±14.19 89.18
ours (k = 1) 94.47±12.69 89.16±10.60 90.60 ±10.70 84.31±11.19
ours (k = 2) 94.09±12.52 85.19±15.94 88.47±12.23 82.47±14.14
ours (k = 3) 95.07±11.67 86.85±14.00 89.05 ±12.90 83.05±14.69
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ISIC 2017 Test Split (600 images). Model with k = 3
Original F1=77.81%±19.62%
Post-processed F1=79.84%±19.27%

ID: ISIC_0012136 F1: 24.73%

Original
Post-processed
Ground Truth

ID: ISIC_0012086 F1: 70.15%

Original
Post-processed
Ground Truth

ID: ISIC_0012092 F1: 91.07%
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PH2 (200 images). Model with k = 1
Original F1=86.18%±10.81%
Post-processed F1=84.31%±11.19%

ID: IMD417 F1: 23.09%
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DermQuest (137 images). Model with k = 3
Original F1=77.96%±21.90%
Post-processed F1=80.23%±16.16%

ID: D25 F1: 21.59%

Original
Post-processed
Ground Truth
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ID: D11_2 F1: 92.65%

Original
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Fig. 2. F1 histograms and sample outputs for the ISIC-2017 test set (top), PH2 (mid-
dle) and the DermQuest (bottom).
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